神秘内容 Loading...
钱永强《GMAT数学精解》
一.整数:integer,whole number (来源:英语学习门户网站EnglishCN.com)
1.因子:factor or divisor
If x and y are integers and x≠0,x is a divisor (factor) of y provided that y=xn for some integer n. In this case y is also said to be divisible by x or to be a multiple of x. For example, 7 is a divisor or factor of 28 since 28=7•4, but 8 is not a divisor of 28 since there is no integer n such that 28=8n.Divisible adj.可以被整除的 multiple n.倍数
2.商和余数:quotients and remainders
余数和商都可以为0
3.奇数和偶数:odd and even integers
奇数和偶数都可以是负数;零一定是偶数
4.质数和合数:prime numbers and composite numbers
A prime number is a positive integer that has exactly two different positive divisors,1 and itself. For example, 2,3,5,7,11, and 13 are prime numbers, but 15 is not, since 15 has four different positive divisors, 1, 3, 5, and 15. The number 1 is not a prime number, since it has only one positive divisor. Every integer greater than 1 is either prime or can be uniquely expressed as a product of prime factors. For example, 14= (2) (7), 81= (3) (3) (3) (3), and 484= (2) (2) (11) (11).
注:除了1和其本身外,还有其他因子的数叫合数。最小的质数为2,最小的合数为4,在讨论质数和合数时,都指正数。1和0既不是质数,也不是合数。
5.整数中的重要概念:
* Perfect square完全平方数,诸如9 = 32
* Perfect cube 完全立方数,诸如8 = 23
* the greatest common divisor 最大公约数
几个数所公有的最大因子称最大公约数,诸如:48与36的公因子有1,2,3,4,6,12,其中12为最大公约数。
* the least common multiple最小公倍数
几个数所公有的最小倍数称最小公倍数,诸如:3,7和14的最小公倍数为42。
*连续正整数的算术平均值也是首项和末项的算术平均值。
同理,连续奇数与连续偶数的算术平均值也是首项和末项的算术平均值。
* the properties of the number of factors因子个数的特性:
1)当一个正整数n有奇数个因子,则n必为一完全平方数。
2)除了n的平方根为其中一个因子外,小于n的平方根的因子与大于n的平方根的因子数相同。
3)当某一正整数n有偶数因子时,则n必不是完全平方数,且大于n的平方根的因子与小于其的因子数相同。
*因子数的求解公式:将整数n分解为质因子相乘的形式,然后将每个质因子的幂分别加1之后连乘所得的结果就是n的因子的个数。
例:80的因子个数可以如下方式求得:80 = 2 4•5,则因子个数为(4+1)(1+1)= 10
*整除特性:
能够被2整除的数其个位一定是偶数。
能够被3整除的数是各位数的和能够被3整除。
能够被4整除的数是最后两位数能够被4整除。
能够被5整除的数的个位是0或5。
能够被8整除的数是最后三位能够被8整除。
能够被9整除的数是各位数的和能够被9整除。
能够被11整除的数是其奇数位的和减去偶数位的和的差值可以被11整除。
记住:一个数要想被另一个数整除,该数需含有对方所具有的质数因子。
*整数n次幂尾数特性:
尾数为2的数的幂的个位数一定以2,4,8,6循环
尾数为3的数的幂的个位数一定以3,9,7,1循环
尾数为4的数的幂的个位数一定以4,6循环
尾数为7的数的幂的个位数一定以7,9,3,1循环
尾数为8的数的幂的个位数一定以8,4,2,6循环
尾数为9的数的幂的个位数一定以9,1循环
例:7123 和3 (321)的个位哪个大?
7和3幂的个位数均每4次循环一次,则将7123的幂指数123÷4余3,因此7123的个位数一定为3,同理将3 (321)的幂指数321÷4余1,则3 (321)的个位为3,则与7123的3 (321)个位数相同。
|